168 research outputs found

    Influence of a Non-traditional Mathematics Content Course on Preservice Teachers' Beliefs

    Get PDF
    A continued and ongoing call for improvement and change in mathematics teaching and learning suggests a need for re-visioning the ways in which mathematics teachers are educated. Suggestions include incorporating reform teaching in university courses that integrate mathematics content with pedagogy and perturbate mathematical beliefs. The context of this study was a group of preservice teachers in a mathematics content course that incorporated meaning-making, dialogue, space and justification into classroom learning experiences. Further, the usual power dynamics between teacher and student were revisited and revised as part of the social norms established in the classroom. Due to the learning experiences in this non-traditional course, students reported plans for their future pedagogical practices as being conceptually oriented, gaining mathematical empowerment, a change in beliefs about the nature of mathematics, a new appreciation for mathematics in general, and enjoyment of group work, presentations, and the use of manipulatives (term used for the use of physical models)

    Genipin-Induced Inhibition of Uncoupling Protein-2 Sensitizes Drug-Resistant Cancer Cells to Cytotoxic Agents

    Get PDF
    Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents

    Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice

    Get PDF
    AbstractCalorie restriction (CR), without malnutrition, consistently increases lifespan in all species tested, and reduces age-associated pathologies in mammals. Alterations in mitochondrial content and function are thought to underlie some of the effects of CR. Previously, we reported that rats subjected to variable durations of 40% CR demonstrated a rapid and sustained decrease in maximal leak-dependent respiration in skeletal muscle mitochondria. This was accompanied by decreased mitochondrial reactive oxygen species generation and increased uncoupling protein-3 protein (UCP3) expression. The aim of the present study was to determine the contribution of UCP3, as well as the adenine nucleotide translocase to these functional changes in skeletal muscle mitochondria. Consistent with previous findings in rats, short-term CR (2weeks) in wild-type (Wt) mice resulted in a lowering of the maximal leak-dependent respiration in skeletal muscle mitochondria, without any change in proton conductance. In contrast, skeletal muscle mitochondria from Ucp3-knockout (KO) mice similarly subjected to short-term CR showed no change in maximal leak-dependent respiration, but displayed an increased proton conductance. Determination of ANT activity (by measurement of inhibitor-sensitive leak) and protein expression revealed that the increased proton conductance in mitochondria from CR Ucp3-KO mice could be entirely attributed to a greater acute activation of ANT. These observations implicate UCP3 in CR-induced mitochondrial remodeling. Specifically, they imply the potential for an interaction, or some degree of functional redundancy, between UCP3 and ANT, and also suggest that UCP3 can minimize the induction of the ANT-mediated ‘energy-wasting’ process during CR

    Cellular metabolism as a basis for immune privilege

    Get PDF
    We hypothesize that the energy strategy of a cell is a key factor for determining how, or if, the immune system interacts with that cell. Cells have a limited number of metabolic states, in part, depending on the type of fuels the cell consumes. Cellular fuels include glucose (carbohydrates), lipids (fats), and proteins. We propose that the cell's ability to switch to, and efficiently use, fat for fuel confers immune privilege. Additionally, because uncoupling proteins are involved in the fat burning process and reportedly in protection from free radicals, we hypothesize that uncoupling proteins play an important role in immune privilege. Thus, changes in metabolism (caused by oxidative stresses, fuel availability, age, hormones, radiation, or drugs) will dictate and initiate changes in immune recognition and in the nature of the immune response. This has profound implications for controlling the symptoms of autoimmune diseases, for preventing graft rejection, and for targeting tumor cells for destruction

    Glutaredoxin-2 Is Required to Control Proton Leak through Uncoupling Protein-3

    Get PDF
    Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2–/–) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3–/– cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism. Supplementary files attached below

    Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular disease, diabetes, and cancer.</p> <p>Methods</p> <p>To explore the relationship between increased body mass and gene expression in blood, we conducted whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary assessment of the predictive value of blood gene expression profiles in obesity was carried out.</p> <p>Results</p> <p>Principal components analysis of whole-blood gene expression data from obese and lean subjects led to efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript levels for genes belonging to the "ribosome", "apoptosis" and "oxidative phosphorylation" pathways in the obese cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based classifiers.</p> <p>Conclusion</p> <p>This study provides a comprehensive characterization of the whole blood transcriptome in obesity and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful blood-based predictors of weight loss success following dietary or surgical interventions.</p

    Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    Get PDF
    Summary Statement We show that in utero undernutrition is associated with impaired cardiac muscle energetics and increased plasma short-chain acylcarnitines in adult mice. Findings suggest that in utero undernutrition is associated with maladaptive programming processes that have negative effects on the heart. Synopsis Intrauterine growth restriction is associated with an increased risk of developing obesity, insulin resistance, and cardiovascular disease. However its effect on energetics in heart remains unknown. In this study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate, and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have lifelong implications for cardiovascular function and disease risk

    Chronic AMPK activity dysregulation produces myocardial insulin resistance in the human Arg302Gln-PRKAG2 glycogen storage disease mouse model

    Get PDF
    BACKGROUND: The cardiac PRKAG2 mutation in the γ2-subunit of adenosine monophosphate activated kinase (AMPK) is characterized by excessive glycogen deposition, hypertrophy, frequent arrhythmias, and progressive conduction system disease. We investigated whether myocardial glucose uptake (MGU) was augmented following insulin stimulation in a mouse model of the PRKAG2 cardiac syndrome. METHODS: Myocardial and skeletal muscle glucose uptake was assessed with 2-[(18)F]fluoro-2-deoxyglucose positron emission tomography imaging in n = 3 transgenic wildtype (TGwt) vs n = 7 PRKAG2 mutant (TGmut) mice at baseline and 1 week later, 30 min following acute insulin. Systolic function, cardiac glycogen stores, phospho-AMPK α, and insulin-receptor expression levels were analyzed to corroborate to the in vivo findings. RESULTS: TGmut Patlak Ki was reduced 56% at baseline compared to TGwt (0.3 ± 0.2 vs 0.7 ± 0.1, t test p = 0.01). MGU was augmented 71% in TGwt mice following acute insulin from baseline (0.7 ± 0.1 to 1.2 ± 0.2, t test p < 0.05). No change was observed in TGmut mice. As expected for this cardiac specific transgene, skeletal muscle was unaffected at baseline with a 33% to 38% increase (standard uptake values) for both genotypes following insulin stimulation. TGmut mice had a 47% reduction in systolic function with a fourfold increase in cardiac glycogen stores correlated with a 29% reduction in phospho-AMPK α levels. There was no difference in cardiac insulin receptor expression between mouse genotypes. CONCLUSIONS: These results demonstrate a correlation between insulin resistance and AMPK activity and provide the basis for the use of this animal model for assessing metabolic therapy in the treatment of affected PRKAG2 patients

    Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE) release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ) rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function.</p> <p>Methods</p> <p>Cardiac sympathetic nervous integrity was investigated <it>in vivo </it>via biodistribution of the positron emission tomography radiotracer and NE analogue [<sup>11</sup>C]<it>meta-</it>hydroxyephedrine ([<sup>11</sup>C]HED). Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET) expression were evaluated as correlative measurements.</p> <p>Results</p> <p>The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [<sup>11</sup>C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle.</p> <p>Conclusions</p> <p>Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system signaling in the absence of systolic impairment.</p
    corecore